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THE principal object of the calculations contained in the following paper, is to
investigate the figure which a fluid, consisting of portions varying in density accord-
ing to any given law, would assume, when every particle is acted upon by the attrac-
tion of every other and by a centrifugal force arising from rotatory motion. To
what extent this may have been the original condition of the earth, is a doubtful
question ; and although observation does not fully warrant this supposition of the
regular arrangement of parts, it has necessarily been made the foundation of most of
the mathematical calculations connected with the investigation. Before proceeding
to this problem, it is necessary to calculate the attraction of a body of any given
figure, and consisting of strata, varying in their densities according to any given law;
and it is in this problem that the principal difficulty lies. The elegant method of so-
lution discovered by Laprack is well known; and I have followed his steps as far as
the point where the equation, known by his name, first appears. In order to illus-
trate the nature of the deviation which I have there made, it will be necessary to
mention some of the principal steps of the two methods.

By means of a theorem, which Larrace laid down as true of all spheroids that
differ but little from spheres, and the properties of the integral of the equation re-
ferred to, he was enabled to substitute the easy rules of differentiation for the more
complicated inverse processes, and thus to compute the attraction of that class of
figures. It has, however, been since discovered by Mr. Ivory, that this theorem is
true only of spheroids of a particular kind ; and, consequently, to this kind the solu-
tion of the problem is restricted. This defect, and the indirectness of his analysis,
led other mathematicians to consider the question; and, in 1811, Mr. Ivory pub-
lished his method, which has the great advantage of being more direct, though
equally limited.

The method given in the following paper does not appear to be confined in its
operation to any particular class of spheroids; since the coefficients of the series, into
which the required function is developed, are determined absolutely, without any re-
ference to the form of the spheroid to which they are about to be applied. The prin-
cipal change consists in the different manner of treating this partial differential equa-
tion. Laprace and the subsequent writers on this equation, both as applied to the
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76 MR. C. J. HARGREAVE ON THE CALCULATION OF ATTRACTIONS,

calculation of attractions and the mathematical theory of electricity, suppose the co-
efficients of every term of the series to' be expanded into another series of the sines
and cosines of multiple arcs; and they avail themselves of the property which these
terms possess of vanishing, in certain cases, when integrated between certain limits.
The success of this plan, however, depends upon the restricting hypothesis above re-
ferred to, that the radius vector of the surface of the body is capable of expansion in
a series of terms, each of which satisfies LapLack’s equation. The following method
shows that the coefficient of the general term of the first series is independent of one
of the variables, and thus dispenses with the second series of expansions. This re-
sult I have arrived at, by first obtaining the integral of Larrace’s equation in its
most general form, and deducing the arbitrary functions introduced therein, from
considerations which enter previous to the equation of the surface of the attracting
body. These coefficients being known, it is evident that the attraction of any homo-
geneous body on a point within or without it may be immediately found when the
equation of its surface is given, since it then depends only on a series of explicit and
definite integrations of known functions, which can always be effected, at least ap-
proximately. From this, the attraction of a heterogeneous body, similarly circum-
stanced, may be found by the usual method of dividing it into concentric layers, and
summing the several attractions of these, deduced as above.
© By Subétituting the attraction so obtained, in the equation of equilibrium of a fluid
body, Crarraut’s theorem is immediately deduced; and, from a peculiarity in the
functions representing the attraction, it will be seen, that the same principles with
longer processes may be carried on indefinitely, without the necessity of actually
determining the precise form of those functions. |

The restricted species of spheroid above referred to, comprises all surfaces of revo-
lution ; so that it is sufficiently extensive for most practical purposes; but the inte-
gration of LapLACE’s equation renders the analysis more direct, and the theory more
complete.

On the General Problem of Attractions.

1. Let ¢ represent the density of a body at the point (z, y, 2); and let £, g, % be
the coordinates of a particle attracted by the body, parallel respectively to the axes
x, Y, %; then, if the power of attraction be inversely as the square of the distance, the
resolved part of the attraction of the body, parallei to
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the limits of integration being determined by the equation to the surface of the
body.

2. Let V represent the sum of the products of each particle by the reciprocal of its
distance from the attracted point.

‘Then V = /‘ f f e dzd y) d. i (}; = and, by differentiating V, we obtain the

dQV d>V
well-known property P + a7 +gE=00—4x g, a.ccordmg as the attracted

particle is not or is within the attracting mass; ¢' being in the latter case the density
of the attracted particle¥. By transforming these equations to polar coordinates, we

obtain

a*Vv 2 dV 1 a2V 1 &V
art T rdr +7”2 a6 +ric d0 +r“’sm20 d ¢* =0,0r—4w¢,
and. ,
v 2 r2dysn@d6'dg
— e o .
\"% '—./o‘n/o ‘/0' {r2 41" — 277 (cos 0 cos 8" + sin 6 sin &' cos (p — ¢)) }*+’

_ h _ 9. . B
where 12 = f? 4 g% 4 h%, cos d = VT T tan ¢ = 7 and similar expressions

are true of 7 ¢ and ¢' in terms of z, y, 2
Put cos § = ,w, and cos ¢ = p/, and they become:
d2 1 d4*V
.

((1-—-(41)(1)+1_,gd(pg--oon-—47rg7~21~ e (L)
[ 2 er?drdudy
v _‘/"lf'lj’. {rP+r?—2rr (pp'+ VI —p) V(1 —pPcos(p—g))}+ (2)
3. Expansion by the binomial theorem shows that
{(r24r2—2rr (up' + V{1 —p?) vV (1 —p?) cos (p — @)}
may be expréssed either in powers of r or of ' ; thus

P07J+P17.IQ+ -+ P rln+1+ ’OPP0r+P1r’3+P21“’+ +Pnrn+1+

where P, is a symmetrical function of w, v'(1 — @?) cos ¢, /(1 — w?) sin ¢ on the one
part, and &/, v/ (1 — '2) cos ¢, /(1 — w?) sin ¢' on the other.

By substituting the first expansion in (2.), and the value of V so obtained in (1.),
we have a series of equations

S S e {0 - ) + =T e+ DR R

=0,or—47¢,
except when » = 2; and in all cases

a%((‘ u?) 2 d# lgd¢n+ +1)P, =0, . . . . . (3)

which is the equation of LarrLace’s coefficients.
* Vide Pratt. Mec. Phil.,, § 168. Larrace, Méc. Cél. liv. iii. 1 Vide Pratt. Mec. Phil., § 169.
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4. This equation was not integrated; but by a skilful use of its properties, the
problem of attractions was greatly simplified by Larrace. He laid down a theorem,
respecting the surfaces of all spheroids of small deviation, that their radii vectores
might be developed into series, every term of which would satisfy the above equa-
tion; and he also gave a method of expansion. By means of this theorem, the pro-
blem could be solved for spheroidal bodies which differ but little from spheres; but
its generality has been greatly restricted by the researches of subsequent writers*, by
whom it has been shown that it is true only for bodies whose radii are expressible in
rational and integral functions of p'y v/ (1 — w'?) cos ¢/, (1 — w'?) sin ¢'. Among these
are the ellipsoid and elliptical spheroid, and a large class of other spheroids. In these
papers I have adopted a different proceeding ; Iintegrate the equation itself generally,
and determine the arbitrary functions contained in the integrals by the circumstances
of the problem itself. In consequence of the peculiar form which P, then takes, V
may be found by effecting the operations indicated, which are only explicit integra-
tions.

5. I shall now proceed to integrate this equation.

Consider » and ¢ as functions of two new variables X and Y, to be determined
from the equations,

dX=—— do+ kdu)

dY=;;zT,, (do + Hdw),

where k and %' are the roots of the equation (1 — p?) A% 4 i _IP'Q = 0. These roots

are %—(% whence we obtain
X=¢+1 \/—llog1 BandY=90—13% --llog1 .o (4)
dX\2d*P dXdY &P, (dY 2P,  d*XdP, d&YdP,
( Xt 2. aaxay T ay: + 72 dX+d,:.9 X’
1 &P, 2 &P, 1 &P, 2u¥ —1(dP, dP,

= A= dXe TSP aXdY T A= dye T U =@p \dX — aY

dPn_ XdP dYdP, V=1 (dP, dP,
= dX+d,u,dY T—@ \dX — 4y

dXdY &P (dY °@P,  d*XdP, d'YdP,
7= azx2 it 2 paxay T ay: T i@ ax ta@ay’
&P, _ #P, . &P,

=axt T2x4y T Iv
Substituting these in (3.), we obtain

_ 4 dP

* See two articles by Mr. Ivory in the Philosophical Transactions, 1812.
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From (4.), by subtraction,

X—Y;—_-.\/_:jlogii::;

whence
- (X~ Y)'\/—l_l
=" PG P PV B
and
-X-VVZ1 4 1

- @ —(E-(x DYoL 1) (E—%(X—Y)V:T+E%(X~Y)V'-_l)2= COSQX—Y;
)

consequently -
#P, | n(n+1)P, _
5 Ch LI & v=0. Letn(n+1)=a.
Let
d aP, _ dv 4 , X—-Y.
dY"'”’thendX"'“oszX— =0,and P, = — X 7 cost—5—
_dP, v 4 X-Y dv4 X-Y . X-Y
V=AY T T dXdY 2 9% 3 dX g COS T —sin—5—
or
d?v X~-Y av
dXdY+dXtan g+ x=y =0
4 cos?
Let
Y+-vtan g =1
Then
d?v v X-Y v dt
-+ tan -+
dXdY "V dX 2 QCOSQX Y X
and
a—2 v 4 X-Yd¢
— 0. Or9 — — 2 — 3
X+ I _oX—Y=0sorv=—g—gce =5
)
whence
dv _ 4 X-Y &t 4 X-Y . X-Yadz¢_
dY = T a—2C008 T g T dXdY T a=32C08 g S5 %
fe b X=X 8 X-Y . X-Y d¢
== T3 T XAy — 4 =2 008 T sin—5— 7%’
or
d?¢ d X-Y a—2
+ < 2tan +¢ —— =0.
dXdyY T dX 2 40osgsz
Let

dt X-Y
ﬁ+2ttan T =q
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and by repeating a similar process, we obtain

a—6
dXdY+ 3tan +q~—————7=0.
4 cos?

By observing the assumptions here made, and the results obtained, we find that in

aP -Y. .
the first assumption dY = v) the coefficient of P, tan X 5 Y is 0; in the second,

X-Y . .
that of v tan —— =1; and so on, in the order of the natural numbers ; and in the

, 4 ;2,2 T 2, 3,2 T 6 ..generallyn,t—z——lljgz;]—).
I shall prove this in the general case, by showing that if it is true of one value of »
(as we see it is), it is true of the next value, and so on. Let the (» — 1)th substitu-
tion give

results, the numerical coefficients arel 2,

d?e de . X-Y a—(n—1)(n—2)
axXay tax(m—1tan=—75—+¢ e XY =0

and let

d X -
7%+ (m—1) ¢ tan =

then, as before,

d? X-Y do n—1 1 ds .
axay T (r—Dtan == g3 + 5~ —x-yv-¢=7x’
COo8 5
and, therefore,
ds —(r—=1)n ds 4 s X—Y,
dX+ X—y =0 and¢=—gx omry cost =5
4 cos
4cosX_YsinX_Y
de & 4 ,X=Y ds 2 2
dY TdXdYa—m—0nC0% T T T EdX T a-(n=1)n
Consequently
Ps 4 ,X-Y ds 4 X-Y . X-Y
T dXdYa—@n—1n®%" T2 —ﬁa—(n—l)ncos g S 5
ds 4(7:——]) X-Y . X-Y
TdXa—(n—1)pC08 T M T =9,
or
d?s 4 X— ds 4n X-Y ., X—
IXaY a—(n—Da %" 3 +an—(n NnCoS g SIM—5— +s=0
that is,
d*s X-Y  a—nmn-1 X-Y
axay +axntn 5 st eoe T =,

and, therefore, the law of coeflicients, as above stated, is correct.
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- Restoring the value of a, we get

s X-Y 1
dXdY+dX"tan +”2‘"TX“::Y*’ 0,

R o s . d X-Y ' . .
which is integrable; and its integral is ﬁ + » . s tan —;— = some arbitrary func-

tion of Y, as x Y. Integrate again, then

X-Y X-Y
-— tan ———dY :
s . fna,n 5 (fs/'ntan 7 ay

XY dY +¢X),
where + is arbitrary. Effecting these integrations, and reducing;

s=cos~ "X~ Y(f os2" X deY+«.LX)

To return to P,, we have the following systems of equations :
P=/vdY,

v—e_/ta" > ax (/'t S5 deY):co ;Xftcos2Y XdY,
Y — -
t= os~* 2X q cost X.dY,
o= cos—z("‘l)y—:;——}éfsc'os2'("—1)1—(_—2—?5.dY,
s= cos"2":j-{——g——}g(‘/;:os”Y
whence

P,=.....[eos 2252 foos= 2 XX (foos X=X, yav 44X )dYdY...(n times.)

5 =cos (V=T logA/TE54) =5 (W/1EE+4/ 15,

Y-—-X 1 . . o
and cos? —— = T and the complete integral will be expressed, by substituting

Now cos Y

for X and Y in terms of & and ¢.

6. But an important point yet remains to be determined. The original equation,
being a partial differential equation of the second order, can only involve in its in-
tegral two arbitrary functions. But here, after x Y and +J X have come in by two inte-
grations, we have n integrations to perform with respect to Y. It would seem, there-
fore, that no constant or arbitrary function of X must be added in these integrations.

MDCCCXLI. M '
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Such is not the case. At each integration a function of X must be added, and these
functions determined by reference to the original differential equation*.
7. Returning to the value of P, we have

o= (p— gy =Tlog [ 74) + 4 (p+ 5 v=1lgrLh).

Now in the calculation of attractions, where P, is the coefficient of r° in the ex-
pansion of

{re v — o (w4 v (1= ) v (L= @) cos (p— ¢)) } &

we know that it is 1 ; consequently

%1(?0—%\/”:—110{;; )—I—-mp((p—l— v =1 l]og1 'w)=l,

and expanding by Tavror’s theorem, we get

/] ]
X% P— X1¢2\/"'1]0g1+ﬂ x21¢(?1):10giiz)2
K2 /=1 (glog 122’
1 1 "
+w+¢'¢g\/~llog*—~1iﬁ s

m - /1 1+ w\3
—%T—?E-b\/—- 1 (V-Q—logi—_—-ﬁ) + &ec.

1+ p)?

+ &ec.
|
2 Ogl—,u,

J

By equating the coefficients of the same powers of log 1 , we have x; ¢ + @

= l,and ¢/ ¢ — ;¢ = 0, or ¥ ¢ — ¥, @ = constant.
Therefore + ¢ and x, ¢ are absolute constants, and their sum is 1; whence it fol-

lows that x ¢ = 0. Let ) ¢ = g, then

b — ( f _zY—Xf Y —X [1 _zY X
=cl| ....J cos 3 cos 5.J] 5 cos

Effecting these integrations, we find that P, consists of a series of powers of

.. (n times) ).

d*P, — 2y d Py

dp® d

* T

+n@+1)P, = 0will illustrate this point.

)
LetPn=d z
d,u —n

, and after substitution, differentiate z times; then (1 — pﬂ) d—E —2@+1Dp T = 0, whence
M M

fl k ;‘; £+ ; + m. It is clear that no more arbitrary constants than & and m can be introduced ; and

yet if the integrals were left indefinite, we might obtain an integral of an expression which should differ from
the integral of the same expression obtained by a slightly different process, by a constant. - By another inte-
gration this would cease to be a constant, and we should obtain thus different values for Pp. The fact is, that

constants must be added at each integration, and recourse had to the original equation, to determine them in
terms of m, &, and p.
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Y-=X . . .
tan —;—, whose coeflicients may, for anything we yet know, be functions of X.

The following process shows that constants as coefficients will satisfy the original
equation, and determines them. The integration itself gives the coefficient of the
highest power.

Let then*
on—1 Y-X
] tan” Y + ¢ tan” 1 Y + ¢ tan” —2
P =c .
+ .+ ¢~ 2 tan? Y + =Y tan ¥r—-x + c(")J
Then
n — 2 — -1 Y-X
rt%-:ﬁ tan”"lY B X+n 2 ¢ tan™ ~? )
— - X
%%E:c* + 25— " tan “3Y X c(”‘2)tanY2X'(1-v|-tan2Y )’
1 @-1
+5c )
[ on —2 Y-X  #n—1, Y - X n-2 1Y — X
él]ta”““w—*g' —5— ¢' tan® +( 5 "+[2 )ta“ !

[n —1]

n—1(n—2 , 2”—2) ,Y-—X

2 ( 2 C’+[n 1] tan 2
| -2 Y-X

d@ Pn ¢ ( 2 Hl + )tann—-3 5

dXdY = 7 .Y — XA -
cos 4 (3 Y-X
2 +...+5 —2~c(”‘3) -I--g—c(""5)) tan3 -

n—3 wyn—1 r) n-2Y—X
+( B} C+TC tan' 0}
—_4 . —_2 -

=c1 +(”24cw 3 c")tand'

4 Y-
+ (—Z—c(”’2)+ > c("““))tan3
Y-X
2

-X

v
.

' 5 Y
3 -3 5 (—5)) 4
2C(n )+2c" tan

Y=X , 1 ¢y
2

+~——c(”“2) tan +5c

1 . 3 (n_
+ (? =D 43 o 3)) tan2

r -3 — -
(n 4+ 1)2" tannY2X+”(n:1) c'tan"“lYQX

3(2 . _ 4 Y-X
+5(F D4 50 -9) tanr 25

2 (1 -X 12
+?(—2-c(”‘1)+—§-c(”"3)) tan — 5 =2

*¥[]=1.2.3.4....a.
M2
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(412 -3, ,Y—X T, Y -X)
————("'*i;)_nll tan”" — +n(n4}_)c’t.':m"‘1 2X
n+1 1 ¢ J _l_zt_(ﬁff._l).c"tann—?u_l_“” L,
" e Pncos*zY_X=cong_X ! ’
2 2 '”+n_(n_4-l-_l_)c(n__1) tanY;‘X_'_”(n‘;’-l) C(n)
Whence we obtain ¢ = 0, ¢" = 0, ¢' = 0, &ec.
Also
nm+l) @=1H@m—=2Y ,_ 2*7% (a@+l) @=3)n—4)) y__ (©—38)(r—2)
( 4 4 )‘J—[n-2];( T T 4 )C = 4 ¢
1 — - o (n— —4) .
(Rt _e=5e D) i = =028 v, o g,
Consequently
fon—1 Y —X gl —2 Y —X]
T B T Fam—giEa—y B 2
gn—1 nos ¥Y—X
2”‘1tan"“6Y_X
toae el Gn=1)En=3).Gn=5) T )
Now
Y -X ) R — 14w _ S— Y -
5 =-—~2,\/_110g1_,u'=tan 1(-—(1;\/_1),...tan ZX

=(—py/ =)
whence, finally,

— on—-1 (_:“‘/—'__l.)n (_”V:T)'n—Z (— '\/:)""4
P,=2 ¢ ( [n] + 2.[r—2].(2n—1) + 2.4.[77,——,;] (2n—1) (2 n—3)+"')’

a remarkable result, showing that in this instance P, is independent of ¢.

P_being free from ¢, is a perfectly symmetrical function of w and x'; and u'is a
constant with respect to w; therefore

_k ((=rvV IOy | (—py =12 (—pvV =1yt
P, = K"( =] +2[n—2] @2r—1) " 2.4.[n—4] 2n—1) (2n—

—p V=1 (—gV =1
( [n] +2.[}7:—2](2n—1) )

To determine K for any particular value of n, we refer to the expression from
which the two series were deduced ; namely,

{7.2 +r2—2ry (‘w‘w’ + V(1 — p?) V(1 — @'2) cos (p — @’)) } ks
When w and @' are each 1, then P, = 1, which gives an equation to find K .

3)+.-.) X
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8. Returning to the theory of attractions, we have, when the particle is internal,
. R i 2w r
YAV AT (R AN J )dﬂdp,’dgv

=2‘7{/;R‘/:116(P07"+P17'+P2:‘Te+ “+Pn;,7;:;:l_+") dr' du,

for that portion of the body which is comprised between a sphere of radius r, and the
surface of the body, supposed to be a surface of revolution round the axis of = ; for,
in that case R, the value of #' at the surface, is independent of ¢'.

9. Suppose, for example, we wish to find the attraction of a homogeneous spheroid,
on a point within it. In this case ¢ is constant, and

] — /“,2 [l«'g -1
R? = (T +:)
a being the semi-major, and ¢ the semi-minor axis.
First, all the even terms vanish; for the general even term is

‘ Rl r2n+1 27;97-2n+1 1—p2  p2\2r-!
37"5/; f-1P2n+1 en dridp' = — 5723 P2n+1 P =) du'
2wor?
+ 2n—1 P2n+l d
. R 1 — F‘IQ “2 2n—1
Now P, ., consists of odd powers of @'s and ( = + ;g) 2 can be expanded
in even powers of w'; therefore the integral of the product (which is an odd function),
1
taken from ' = — 1 top' = 1,is 0. Also J/_, P, . du' =0% Alltheodd terms
above the third vanish ; for the (2 4 1)th term is
R 4 r2n - 1 L—pw2  p\"~ 1
27"6./; f-—lPan’2n jdr'dp = —gl.,f—lpznrzn( z 1t du
n—lf P2n72d(.o,for1tmaybeshownthat[ f PPrdpde =0,if s and/
12 1o\ % — 1

is a rational

. . 1—
be different integers. Now when 7 is greater than I, ( af + %

and entire function of /', and, therefore, capable of being expressed in a series of
Larrace’s coefficients, the highest of which will be of the (2 » — 2)th order; and
therefore no term of this expansion can be of the same order as P, ; and the inte-
gral of the product of any two of different orders, between these limits, vanishes. So
the second member of this vanishes.

* See Pratt. Mec. Phil., § 180.
+ See Pratt. Mec Phil., § 176. Porsson, Théorie Math. de la Chal., chap. viii. Larracs, Méc. Cél. liv. iii.

chap. ii.
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The first term 1is

2%'@]. f rdrdw —wg/. (l 7 ;g ld‘w'—‘vrgr?f_l_ld‘w’

=27p (a2 ﬂ:—i — r2), (e being the eccentricity).

The third term is

FRae ) S (G- 0) G- w) paraw
L ANCE M)(*—#’Z)rzlog( # - )aw,

_ , V(@ — c?) 2 ¢ 4
=—7¢y (“3‘—4"')’“2(“ lan= = —Fata—%)
1 1 v 1 —é?
=—~37rg(?—(.o2)r2(§- ;2-+ ( )sm—'le) for K, = 9.
. o
The value of V for the sphere of radius r, calculated by the usual method, is L}—fg—r ;
consequently, for the whole ellipsoid, the value of V is
e —p2
47‘” +27 g(a2 )sm—le - r2) —3%5(—3—— @ )7'2 T +~/(l e) sin-! e).
Differentiate to f, by means of the equations 72 = f2 + g% 4 A% and p = —i—, and we
have
av . é? .
_—‘z}_zattracthn ne= -|—2'z'§f(l —_ —|— ( )Gm“l ), | which are the
. s common ex-
80— g = attractioniny = + 27¢g (l - —:9— + ——%———) sin—1 ) ; ¢ pressions
: otherwise
— g2
so — ‘é—); = attractioniny = 4+ 47¢h (+ e_12 — ‘/(1,3 *) gin-1 e) ; found -

Also
dVv . r 3. (1 . M(l—eg)
— -, =attraction to centre = + 4« g{ 3+ 7.1"(? - y;‘)( eg + ———sin—1le) ;.
10. By a similar process, I have deduced the attraction of an oblate spheroid, on
a point within it; the density varying inversely as the distance from the centre. The
corresponding expressions are

IdV | i 3 wof 1 1 1—e’)?  21-—¢° 1+e] .
df—+2 ¢y T 1a(l—¢&) eg_'.%__( e T3 . )logl-e}’

av ] 3 moyg 1 1 ((l—e“’ l—ee) 1+ e‘%.
—@"+2W57—Za(1——e9){eq-—3_ T2 +3 e logI:e_’

* See Pratt. Mec. Phil., § 172. T Ibid. § 158.
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dV_ moh 1 1 (l—e) 21—e9) 1+e
—ar = T27 g1'—|_2a(1—(39){,«3_9_-?_"( +3 log e}’
dv 37me(3ut—1) ((1——e2 21—e) 1+e
=27ty i { ‘- e t3 logi—¢-
11. When the particle attracted is external, the series in (3.) does not give a finite

expression. Instead of taking it separately, I make it a case of a general theorem
which follows.

12. To find the attraction of a spheroid on a point within it, the density being any
function of the distance from the centre, and the eccentricity being small,

Let ¢ ¢ ' represent the law of density; then the value of V, for the portion com-
prised between the surface and a sphere of radius 7, is

2%gﬁR‘/_]_ll¢r'.f' (P0+Pl%+...+Pn:,—Z+..)dr'd(A’.

Integrating by parts we have

Sor Py = 2 4 ) Y 1) ﬁi‘ﬂr1+("—1)”("+l),«m+l+&‘

Therefore the (n 4 1)th term of V is

2mer” JO R, (B2 + =) 4 + = 1) n 2 (et 1). n+2+)

—-27:'57"“[_an (rf’_rl—l—(n—l 7 -+ (n—1)n <i”_’l_l--|—(n—-l)n(n+l) n+2+ )d,w

1
—_

1 ‘a‘ ? . .
Now R = {p +\s—- —) ‘w‘?} =a(l4eEu?) =a (l — %{A’?), rejecting et

2 12

and higher powers of ¢; and ¢, R = Pim) @ — Py @ - 22 ’u to the same degree of

accuracy. The last member of the expression for V need only be calculated when
1

n = 0; for all the rest of the terms (involvingl /: , P, dp where n > O) vanish.

The first member need only be calculated when n = 0, and when » = 2; for when
n is odd, it vanishes as before ; and also when » is even and greater than 2: for the
functions of R involve no higher powers of x' than the square; and consequently
they vanish, when multiplied by P,, P;, .. &c., and integrated with respect to w/, from
— 1to 4 1%,

When n = 0, the term is

1 1
QWff_l (R<P,R~<D,,R)dfh’—27re/:1 (ro,r—o,r)dy,

) ' 2 12
=27gf_l(a¢,a—¢a.aeﬂ - 9,a )d;.o’—47rg(r¢lr-¢”r),

2
=47’§(a¢/a T _% @2oa— (ror— q)ur))-

* See Art. 9.
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When n = 2, the term is
_2"7’57'2((" _.__)f ( 12 3)(¢1R ‘f’ug +2¢’m +2. 3¢'w + .. )dy.

=2 mer (=LY 3—1] )7 (=) o
=*§“”E"2(("2"_)2 [m — 11/" ((»’2 1)( m_la.eﬁgm_l_u me; Q)d'
P
—.:%qrgrz(‘w?—--g—)e?El m —1] (_aﬁmz.m "‘m‘_‘l)——-——vrgr?(p —-—) epa.
P, To calculate V for the sphere whose radius is r.

Let the sphere be referred to polar coordinates, the centre
¢ being the pole.
LetOC=7r,0P =r;,and POC=10; thenPC = v (r? 4 2
— 277, cos 0).
Mass of the element at P=¢ 72 ¢ r, dr,;sin 0d 4 d », and

__/"/‘:’/‘2" pri¢rdrsintdide f /'w r2¢r sinddr d
“JoJoJo VN(@E+r2—2rrcosl) — TeJ oo V(2 +r2—2rr cosb)
"7 7 dmp [T
=°’"€/: '171‘]((7'+7'1)—(7"'7'1))d7'1=";—‘/0. rer dr

—-————B(rch,r—2r¢“r+2¢,”r—K),

=)

K being the value of r2¢, 7, — 27, 9,7, + 2 ¢, 7, whenr, = 0.
The whole value of V then is

47 {aq)la_ ¢“a__(1;_82a2¢a_ ((Pur ¢mr+ )"" 0" (("2 - ';_) ez(pa}.

And the attraction toward the centre

av 1 1
=—-d—r=47rg 1"7;+-:<pu2——3)re2q>a},

«.]/r=24>“,r—2r¢”r+r2¢,r—K=£rr2¢rdr.

13. To find the attraction of the same spheroid on a particle without it.
The series (Art. 3.) is

2wgﬁRﬁl¢r'(P0T;+Pl7;.+ ) drduy.

where

Now
L/ﬁtpr’.r'""'l dr ="t r —m+ )", +nm41)r" "1, — &e. (A);

and the general (nth) term of V is
2wp

1
Y (r’”+‘ o —(+ )", r +nmt 1)1, — &c.) du

e o,



AND THE FIGURE OF THE EARTH. 89

where C is the value of (A) when » = 0. As before, the last term need be calculated
only when » = 1; and the first when » = 1, and »n = 3.
When n = 1, it is

27/ Rz R—2R¢,R429,r—K)dp =222/" yrau
-_—_4—?(¢a—%—a3¢a).
When n = 3, it is
we—5)2 S aw (w2—7) (R4¢,R~4R3¢;,R+ 12R2¢ R — 24 Ry R
+24¢VR)=——(¢ —l) L pa. e

The whole value of V is

47rp

p ».pa—-——a an——({.o 3)§;¢a.e2}.

And
47rp

—a pa—i5 (pz—%)g—:-¢a.e2}.

V]
14. Instead of the eccentricity e = \/ (l - :7) it will be more convenient to em-

: 2
ploy the ellipticity e =1 — %*. These give ¢ = —e2—- And the values of V become for

an internal point,

srgfapo—g,a-(0r—2o,r+5) =5 dpa—F(w - 5)eals

for an external point,
1 € 31 1
4 71"37{'41& - —3-a3¢a——g—7:§((b2—§) a5¢a}.

15. To find the attraction on the supposition that the body is composed of sphe-
roidal layers, homogeneous in themselves, but differing from one another in density
and ellipticity.

First, on an internal point.

Let 7/, as before, be the radius vector of any layer; a' its equatorial radius; ¢ ¢ @'
its density, and ¢ its ellipticity, being some function of &' as x, . Then

d=r (Q4dp?)and pd =¢r +r ¢ ryrpyt=¢r+Fr. ‘u,’z,suppose
Consequently to the term before produced in (12.) by ¢ 7' we must" add a term

similarly produced by F»’ . "2 Also, instead of taking, in the first instance, the por-
tion comprised between the surface and a sphere of radius r, we must take the por-

* See Puissant, vol. i. p. 259, where the word ellipticity is used in this sense.
MDCCCXLI. N
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tion between the surface and that sphercid on which the point lies, whose ellipticity is ¢,.
The (n + 1)th term of V now becomes '

n R g R Fy
2wgr£1Pnd@'{‘/: ﬂn_ldr’—l—‘w’z . ﬂn_ldr’}.

1
a(p,a—gb,,a———;-a?qaa— —;—(@2—3) roa
The first part of this gives 4 = ¢ ,

—\aga—g¢,a— %a’é’q&a— %»(yﬁ —.%-)rﬁcpa)

a being semiaxis major of the stratum on which r lies. To determine the other part,
it is necessary to compute it when » = 0 and » = 2, which gives

a a !
47p {—;-“ﬁ dFddd + %—rz(pﬂ—--?l?)ﬁ E}da’}.
To the sum of these we must add the value of V for the inner spheroid; and for this

purpose we have to obtain V for an external point.
To the expression in (13.) we must add

228 S au (2, [T Rt dy),

to be calculated when n =1 and » = 3. This is
|

1 e =3 e
47rg{§; , Fd.d%dad 4+ — ‘/(:Fa’.a"fda’}.

The whole value of V is

e 1 1 i 1 g
““ - Fapa—g(w—3)ikoaty [Fa.add

4mp
2

r /l,-—-—l—
1 3 a '
-2 4 7
+ 5 ‘/0 Fd.d4da

After writing a for a, and s, for ¢, add this to the other value of V, and apply the equa-
tions

‘B !___/al ! - N
ﬁ Fd.ddd= [ a?¢ d@a—a29¢>a--—-3.231¢>a—£@a’d(a’ze'),.

1 a 112 g l/a "’!. ) 1 a
— —_— 3 —_— n2 . ! 13 !
h/(: Fd.a?dd = [ a sd¢a—ael<pa-r‘/o‘ pad(a®d),

and similar equations for the o_ther integrals ; and we shall obtain

aga—¢,a—apa-+t ¢“a+\£;—- —;—{‘Am pad' d(a'?¢) +%.£a¢ald(alsgy)}

L "’?(P?—%) {ﬁa“'d*"l‘,l«s./;a%'d(alsg)} Jl

V=4dap
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16. To find the equation of equilibrium of a heterogeneous spheroidal mass of fluid,
revolving about its axis, with an angular velocity .

By the principles of hydrostatics the general equation is f Qf = f Xdr+Ydy

+ Z dz), ¢ being the density at the point (2, y, 2), p the pressure, and X, Y, Z the
av

sums of the resolved parts of the forces; which are — ik %Iy’— — %—g, and the

centrifugal force. Let the axis of x be that of rotation; then the centrifugal force is

»® z along z, and »? y along y. Let us express » in terms of the ratio of the centri-

fugal force at the equator to the equatorial gravity. Call this ratio m, which is small

in the case of the earth, being of the same order ase. Then

_a*'d® _ fd® or a? dmemia
mass ~ 4wegda’ - a®
Therefore
dav 47rgm\ba e dv | 4zemba.y , dV
X=7z1 @ Y= dy + & L=
and
D=V Gy

Now f %?i is a constant for a level surface. Hence for any stratum we have
C=V 4220V E (e,
At the surface this is

"!_’;rﬁ___f <pa’d(a’3 no_ {.b _______) f ¢a'd(als ;)+In1£a(l_ 2)7'2

1 1
=z'TrMa'"5:3(F° )N +32aﬁM a(l—p),

1! I a d
h1a=£a¢a' L—l»(-a—%—:?»f—l)da',andNa:/; ¢ a (;za,el)d I
For r write a (1 — ¢ pﬂ), then
Ne 1 “Ma
=Setew) -5 (w—3) & +ema-p "
Equate the coefficients of x?, then

Mea m 3Na
Mooy =302 ().

17. By differentiating and changing the sign of f %711, we obtain the amount of

gravity which acts towards the centre ; which, to the order we are now considering,
is the same as the whole force of gravity ; since the cosine of the angle of the verti-

cal differs from unity only by terms of a higher order.
N 2
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Consequently
3 M
_413{3,’3 ( ———,g?(l—#z)rasa}:
1\ N
“‘47"3{33(1""-5("2)_—(!"“—"ﬁ_ﬁ(

=4z'g§~;§{l+2sp2+(1-—3(1.2)(e—m)-—m(l-— 2)}(byB.),

—-47’31;{2{1 +8—_+{b (5m—-2)} G{l+smzl(—m-— )}

where G is the equatorial gravity and / the latitude.

18. From this it appears that up to terms of the 1st order, R = @ (1 — ¢sin?) is the
equation of the curve which generates the surface of equilibrium, where the value of
¢ depends on m, or on the velocity of rotation: but as the coefficients of higher
powers of sin / may be considerable, it will be useful to find the surface of equilibrium
to a greater degree of exactness. For this purpose we must introduce the fourth
power of sin /, whose coefficient will be of the second order. Let the equation of the
stratabe @' =1’ (1+¢ u2 + A’ pt), or ¥ = o' (1 — ¢ p2 + (2 — A') u*), where ¢ and A’
are functions of ¢’ as x @' and 6 o'. Then

U
pad =¢r+Fr'u’+r a7 drqS m) e 5 +r¢' rorut=¢r+ Fr.p?+IIr.p* suppose.
The (2 + 1)th term of V for an internal point now becomes
R !
Qw'grf d,w'P{[ ﬁ%,dﬂ i, ’Jffldr’+(b'4 , n_ldr}.
By writing for » and R their values in terms of a and a, it is easily found that

[R o dy equals a:f d + ( ‘f_z)( s 4 (2 — A) — 4n__} 22)

Jm— 1

a .
4 af_ 3) 52"' the same functions of a and ¢,.

And that similar equations are true for the two remaining integrals.
1st. Let » = 0, and we have )

[a“"f’“'d“"Faz‘P“(‘“ EI""2+I""“(% 52--A)) +a3¢'a#

2 du

%’f/ll [ + pb'zj(:aa'.Fd'da' + F‘rz a?Fa(— 2{4.’2) +#’4£aa’na'da’
— same function of a and ¢,,

which gives

4«;:3{/ a@a’da+a2cpa(-—-3—+5<252 A))+a3cpa +3f Fd.a.dd

- aﬂFa—5— + ?‘/0‘ a'.Ha’da’} — 4 = ¢ (same function of a, ¢, and A,).
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2nd. Let » = 2, and we get
2.27,3([,;_L) r“’fl d@’( ’2—*1~){ aai-'f—'da’+(¢a—<ba)(-e’fb’2+#"(%Q—A’))
+(aga—aga) T 4 [y 4 (Fa—Fa)(— ¢ p? +_Alaﬂa'.a'.da'},

which gives
4me (yﬂ——l—)rz{cpa( 5-[-35(2 A))+a§ba~22 fa-F—q-da Fa.s
35‘/'“@8(1}_ 47rg(yﬂ———§) r? (same function of a, ¢, and A,).

3rd. Let n = 3, and we have

T (o= T gs) 2mem (o = Fue %){ﬁ“%%—'da' +(&-%)

o da ¢a e Ta
(—E’M’Z—M“(E-FA'))*‘(T“T{)E’27+ T da+ (G =) (=
aH !
S dd b
or
¢al (& dla 2 e Fa aJl o
(!”_7f”+35>4”§’"{‘a +A) 71879 a2+9f a’3d“'}

- ((,o 7 @2 4 35) 4 7 pr* (same function of a, ¢, and A,).

19. To the sum of these must be added V for the inner spheroid, for which we shall
have to find the value of V generally, when the attracted point is without the body.
The general term of the series for V is

Zee Sl anPuof S e ar e [ E s [ T ]

and

‘R . L n n
A r ¢r’d7"-—/ d".pd.dd +a +1¢a(-—s,u,2+(,o4(ez——A)+(/,4392)

£ f°

+an+2¢ a

and similar equations hold for the other functions.
1st. Let n = 2, then we have

1 a
Q:Q,ﬁldfu{‘/o. d?¢pa dd +a*0 a(— eM'2+M'4(252‘A))+“w'a1%

+ [ @Pddd + B Fa(—sp? +f0“a'2na'da'},
which is equal to

TS et dd b @oa(- G+ pea- )t adafr g/ @R e dd
_?a?’Fa.e—l—?‘/o) a’ZHa’da’}.
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2nd. Let » = 4, and the term is
(= 25 () S o s g (=i m)
E-Q-gj+‘/0‘aaz""Fa'da’—a5Fae;,e,’2-|--‘/(:a(z"‘l'Icz'da’},

w—
3§
= {“M(
—e%a‘*Fa.e-l—%‘/olaa"*Ha'da’}.
3rd. Let » = 6, and we get
1225 1 6 3 /e
(#»4 _ldw'(m'4—7m’2+?g){£ apdda
14 a
+a7<pa<—epo'2+‘u,’4(4ez——A)>+a8¢'ai2”'—+‘/(; ad*Faddd —aFaep?
+‘/0.aa'5Ha'da'},
which is
4 . 1 a '
Wg({/ﬁ 7(»+35){a qoa——(452 A)+a8¢a~e2 ~a’Fa+§‘/0. a’GIIa'da’}.

20. In these three terms write a for a, ¢, for ¢, and A, for A, and add them to the
other value of V, and apply the equations

ﬁaa’zﬂa'da'z%‘/(:aa"*d(xa’?qo'a’) +./01aa’30a’d(¢>a’)=%a452¢'a+a3A¢a
—2./0‘“a'3xa’2.dqoa’—_/o‘acpa'd(a'i”A’)= -—;—a4z2¢'a+a3A¢a—-2a352©a

+of padd@e) — [“pd d(@® ),

and similar equations for the other integrals, and the value of V for an internal point

+a6¢'d

or

4me ++ 5(322 A))-}-aﬁgba o 5_/ d*Fddd

47
7f"2+35 -

dy L3 e

5 2

becomes
d(a’9 {

)}

4:71'61

3 d) (r%‘

=4wg{M'a

9(‘”‘ - 7”‘ +35>< ./ pa

— M’a+—é—,;Ma+~5- ((.02-- :3—) (7~2N’a-~r2N’a+;gNa)

da

" 'd(e'—f;—(e'Q—QA'))
oa

dad

, aIQ( 2

¥)

’+3r
r+1f

——dd +r5 /

F 3= B 2) (rpa s bre) |

where the functions M, N, P, &c. are substituted for the corresponding integrals.

ad(a's{l—e+ 3o A’)})

dad

“(efi=3on—n)

)

d ( @7 (4%~ A'))
dad

da

da'>
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21. The equation of equilibrium will be formed exactly as in (16.), except that
the expression for the velocity must be found more accurately. By (17.), the force

of gravity at the equator is 4 = ¢ g;;? (l +e— 7’" ); and the centrifugal force is #?a ;

w?a

2
“therefore m = ’and@2=4vg%§(m+me—3;ﬂ).

3m
41rpd 2(1-{- -

4

The equation of equilibrium becomes
fd‘n—-C V+27rgr2(l—-{.02)\;al;m(l+ 3m

which at the surface becomes
'——3—-;-5(@ 5) s (=gt 5) Wt =25 (nms—2T),
(1+EM2+AW‘)——(M —3) 3w G 5 (- Fur+33)
+ 155 =200 M (m ot me = 2T).

Equate the coefficients of x? and those of %, and we have two equations for deter-
mining ¢ and A, thus showing that equilibrium is possible. These are,

Ma( m 3 3 Na 1 € 2 Pa
b —_—— - — 2 —g- = — =
sa g —gmetgpt)— (5 5) 21 a5"0

Na?:s 1 Pa

and S -G =0,

k M 11 N
whence g’g( 2+ 7 +__m +_m_€___7_52)=§.£
~and LY P YORRL L P £

22, The resultant attraction in the direction of r, is obtained by differentiating

‘/lg,z-’, as found in (21.), and changing its sign. This produces

4"'?{2{#" ( )Na 9( 2+35)P "(l""f"z)(m"‘m‘_ﬁgf *l?\;d‘ag}’

since the terms arising from dltferentlatmg the expression for V in (20.) with respect
to a, cancel each other.

For r write its value, and arrange the result according to powers of w, and this
formula becomes

3a2(1 m+me-——*—+,w (2e+m+2me— w)+ 4(2A+52—ms))

dmp

Na 1 3 4

- —'5+@2(3—35)+M ')+ (T —prar +etg) |
._47z‘g3ag{l+ 3m £—|—Zm2._——-32+ A

+éh2("‘m'—5+ 2me_}4§m2__2_252+ A)+p (429—3A— ——me)}
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by applying the two equations deduced in last article. The total attraction normal
to the surface, or the force of gravity, is found from this by dividing by the cosine of
the angle of the vertical, or by 1 — 2 (»®> — p?).; whence

g_49rg§1ag{l+e 32m ?Zme+ m2———-e2+ A

+;.a( m—¢+ &= ms—%mz—%s—ez-l- A)+p(2ez—-3A-—}£me)}

Let A be the sine of the real latitude ; then as p? = A% — 4¢ A2 — A%, we get

g=dmega{lte= P —fimetgmi—get A

+ A% (%m — e+—§—me——4—m2+-—7-52+1—7%A) —7\4(252-1- 3A—-~5§me)}.
Let G represent the equatorial gravitv- then

g = G{l+7\2(~m-—-e— 26

me+ 52-}— A)—?\‘* (2e2+3A——-ms>}
=G{1+sin21(§m-—e— i'—%me + 752— 7A)+sin2lcos21<2s2+3A——gms)},

which is an extension of CrLairauT's theorem.
23. In this process A indicates the amount of deviation of the required surface
from the surface represented by » = a (1 — ¢ p?). If the equation had been taken

a=r { 1 + ew? — (g—e2 + B) ((»4 —_ pﬁ)-{- e2p,4}, B would have been the index of

deviation from an elliptic spheroid.
To apply CLairaUT's theorem to this surface, we have

t=e+ 3 e+BandA—-—-—-—B
whence
g:G{l-I—sin”(—;— e+ B me)—-sm”coszl( me—-~+3A)}

which is the same expression as that obtamed by Mr. Airy in the Philosophical Trans-

actions, 1826, except that instead of e or 25 the symbol is used to represent (L}c.

24. The circumstance of the terms arising from the differentiation of V with respect
to a vanishing, affords an easy method of extending Cramraurs theorem indefi-
nitely, without calculating the value of V.

It may be shown independently, that these terms cancel each other in all cases.

The (n+1)th term of V for the porticn including the point is

ngrf du' P, {ﬁ ,,Jn—ldr+ /_)./R ,],:f;d""l' 1"

The couespondmg term for the other portion is

?j:i d{&’P {‘/0"‘ r,n+2 ¢rldrr+‘u‘/2.Awrm+2 FT’(lT’+{b’4/;rH7-’,T'”+2d1J+...};
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and it is evident, by inspection of these functions, that that portion of the sum of their
partial differential coefficients, which arises from differentiating with respect to »
under the signs of integration, is equal to zero. This being the case, it is not neces-
sary to know the forms of the functions M a, N a, P @, &c., nor their numerical coeffi-
cients; but only the functions of w, by which they are respectively multiplied ; and
these are LarLace’s coefficients.

Thus the equation of equilibrium at the surface would be

Ma 1 1\Na 1 6 3\ Pa 6 15 5 5 Qo
C=§7-3"((‘2—‘3‘)W+?(M4—7M2+33 75“—(!* — et tart—ar)

= ;IZ (1 4 ¢ w? + A pt + D ub), suppose.

S| =

+ —;—(1 — w?) r2m G, where

Expand r, recollecting that N a, P a, and Q @ are of the 1st, 2nd, and 3rd orders
respectively, and we have three equations to determine¢, A and D.

By differentiating C with respect to r, and eliminating N a, P a, and Q @ by these
three equations, we have the resolved force in r, which divided by the cosine of the
angle of the vertical gives g exactly as in (23.).

It is evident that this may be carried on indefinitely ; and to any order, without
finding g for the next lower order.

MDCCCCXLI. (o)



